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Abstract—Distance function is a main metrics of measuring the affinity between two data points in machine learning. Extant distance

functions often provide unreachable distance values in real applications. This can lead to incorrect measure of the affinity between data

points. This paper proposes a reachable distance function for KNN classification. The reachable distance function is not a geometric

direct-line distance between two data points. It gives a consideration to the class attribute of a training dataset when measuring the

affinity between data points. Concretely speaking, the reachable distance between data points includes their class center distance and

real distance. Its shape looks like “Z,” and we also call it a Z distance function. In this way, the affinity between data points in the same

class is always stronger than that in different classes. Or, the intraclass data points are always closer than those interclass data points.

We evaluated the reachable distance with experiments, and demonstrated that the proposed distance function achieved better

performance in KNN classification.

Index Terms—Distance functions, reachable distance, machine learning, KNN classification

Ç

1 INTRODUCTION

IN machine learning applications, we must measure the
affinity between data points, so as to carry out data cluster-

ing, or data classification. A natural way of measuring the
affinity between data points is euclidean distance function,
or its variants. It is true that euclidean distance is geometri-
cally the shortest distance between two data points, which is
only a spatially direct-line measure [1]. However, euclidean
distance function and its variants often provide unreachable
distance values in real applications. This can lead to incorrect
measure of the affinity between data points. In other words,
this is not a real reachable distance in real applications
although euclidean distance function and its variants have
been widely adopted in data analysis and processing appli-
cations.We illustrate this with two cases as follows.

Case I. There is a gap, such as a frontier, a river/sea, and a
mountain, between two points, see Fig. 1. This gap can often
be unbridgeable. In other words, these two points are not
able to reach in euclidean distance time from each other.

Case II. Two data points are packed in different bags/
shelves, illustrated in Fig. 2. For example, in a clinic doctors
always put medical records of benign tumors into a bag, and
all medical records of malignant tumors into another bag.
This indicates that a medical record concerning a benign

tumor is very far from any medical records of malignant
tumors.

From the above Cases I and II, the euclidean distance
between two data points cannot be the reachable distance.
In other words, reachable distance between two data points
has been an open problem. However, in Big Data mining,
we must measure the affinity between data points with
proper metrics. These motivate us to well understand train-
ing data and design a reachable distance function.

In real data analysis and processing applications [2], ones
often directly apply euclidean distance function and its var-
iants to measure the affinity between data points without
understanding training data. This can lead to incorrect mea-
sure of the affinity between data points. And the discovered
results do not meet real applications. It is true that data col-
lectors always ignore some information, such as that in the
above two cases in data preparation stage (data collection).
For example, when medical records are collected and input
to the computer systems in a clinic, data collector often takes
all the medical records out of from their bags without distin-
guishing them unlike doctors. After stored in the systems,
these medical records look like coming from the same bag,
and the natural separation information has passed away. To
make data analysis algorithms applicable, the euclidean dis-
tance function or its variants are employed to measure the
affinity between data points, whether the euclidean distance
between in two data points is the reachable distance or not.

While the natural separation and unreachable informa-
tion are missed in data collection stage, training data should
be well understood before mining them. Without other
information, in this paper we advocate to take the class cen-
ter distance as the natural separation information, and
design a reachable distance function for KNN classification.
The reachable distance between data points includes their
class center distance and real distance. And its shape looks
like “Z,” it is also called as Z distance function. If their class
center distance is large enough, the affinity of two data
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points in the same class can always be stronger than that in
different classes. In this way, the intraclass data points are
always closer than those interclass data points in a training
dataset. The reachable distance is evaluated with experi-
ments, and demonstrated that the proposed distance func-
tion achieved better performance in KNN classification.

The rest of this paper is organized as follows. Related
work and some concepts are recalled in Section 2. The Z dis-
tance (reachable distance) is proposed in Section 3. The
reachable distance is evaluated with experiments in Sec-
tion 4. This paper is concluded in Section 5.

2 RELATED WORK

This section first recalls traditional distance functions. And
then, some new distance functions are briefly discussed.
Finally, it simply discussed that euclidean distance is often
not the reachable distance in real applications.

2.1 Traditional Distance Functions

The demand of distance function is everywhere in real
life [3]. For example, when building a railway, we must
roughly calculate the required construction materials
according to the distance between the two places [4]. The
arrival time of express delivery is often related to the dis-
tance [5]. High jumpers must take off within the prescribed
distance [6]. The height of basketball frame must be unified
by height calculation [7]. This shows that the distance func-
tion is very important in social life [8]. Common distance
functions include euclidean distance [9], Manhattan dis-
tance [10], Chebyshev distance [11], standardized euclidean
distance [12], Mahalanobis distance [13], Bhattacharyya dis-
tance [14], Kullback-Leibler divergence [15], Hamming dis-
tance [16] and cosine distance [17]. Next, we introduce these
distance functions in detail.

Traditional distance function is defined as follows.

dða;bÞ ¼
Xd
j¼1

aj � bj
�� ��p" #1

p

; (1)

where a and b are two sample points and d is the dimension
of each sample (i.e., the number of features). In Eq. (1),
when p ¼ 1, dða;bÞ is the Manhattan distance, when p ¼ 2,
dða;bÞ is the classical euclidean distance, and when p ¼
infinity, dða;bÞ is the Chebyshev distance. These three
kinds of distance are the most common distance measures.
euclidean distance is a very intuitive distance measure,
which has a wide range of applications. However, it is not

suitable for high-dimensional data. Manhattan distance is
called city block distance, which is more non intuitive than
euclidean distance, and it is not the shortest path. Cheby-
shev distance is the maximum distance along the coordinate
axis, which can only be applied to specific situations.

In view of the different distribution of each dimension in
the data, the standardized euclidean distance improves the
euclidean distance, i.e., each feature is standardized to have
the same mean variance, as shown in the following formula.

~X ¼ X� m

s
: (2)

Each point in X is normalized by the Eq. (2), m is the
mean, and s is the variance. ~X is the data set after standardi-
zation. The standardized euclidean distance is as follows:

dða;bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
j¼1

� aj � bj
sj

�2

vuut : (3)

From the Eq. (3), the standardized euclidean distance
adds 1=sj to the euclidean distance, which can be regarded
as a weighted euclidean distance.

Mahalanobis distance is also a variant of euclidean dis-
tance. The Mahalanobis distance is defined as follows.

dMða;bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞS�1ða� bÞT

q
; (4)

where S is the covariance matrix. It can be seen from Eq. (4)
that if the covariance matrix is a identity matrix, the Mahala-
nobis distance is the same as the euclidean distance. If the
covariancematrix is a diagonalmatrix, then theMahalanobis
distance is the same as the standardized euclidean distance.
It should be noted that Mahalanobis distance requires that
the number of samples of data is greater than the number of
dimensions, so that the inversematrix of covariance matrix S
exists. Its disadvantage is computational instability due to
covariancematrix S.

The Bhattacharyya distance is a measure of the similarity
between two probability distributions, as shown in the fol-
lowing formula.

dBðp; qÞ ¼ � lnðBCðp; qÞÞ; (5)

where p and q are the two probability distributions on data
X respectively. If it is a discrete probability distribution,

Fig. 1. There is a river between A and B.
Fig. 2. Medical records with different classes are often packed in differ-
ent bags.
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then BCðp; qÞ ¼ P
x2X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxÞqðxÞp

. If it is a continuous proba-
bility distribution, then BCðp; qÞ ¼ R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðxÞqðxÞp
dx. The KL

(Kullback-Leibler) divergence is similar to the Bhattachar-
yya distance. It can also measure the distance or similarity
of two probability distributions. As shown in the following
formula:

KLðpjjqÞ ¼
X

pðxÞlog pðxÞ
qðxÞ (6)

KLðpjjqÞ ¼
Z

pðxÞlog pðxÞ
qðxÞ dx: (7)

Eqs. (6) and (7) are the discrete probability distribution
and continuous probability distribution, respectively. KL
divergence has a wider range of applications relative to
Mahalanobis distance.

In data transmission error control coding, Hamming dis-
tance is often used to measure the distance between two
characters. It describes the number of different values in the
two codes. The formula is defined as follows.

dHða;bÞ ¼
Xd
j¼1

aj � bj; (8)

where � is the XOR operation. Both a and b are n-bit codes.
For example: a ¼ 11100111, b ¼ 10011001, then the Ham-
ming distance between a and b is dða;bÞ ¼ 6. Hamming dis-
tance is mostly used in signal processing. It can be used to
calculate the minimum operation required from one signal
to another.

In addition to the above distance functions, there is also a
cosine distance function. It is derived from the calculation
of the cosine of the included angle, as shown in the follow-
ing formula.

dCða;bÞ ¼ 1� a � b
ak k bk k ¼ 1�

Pd
j¼1 ajbjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

j¼1 aj
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
j¼1 bj

2
q :

(9)

Cosine distance is mostly used in machine learning algo-
rithms to calculate the distance or similarity between two
data points. Its value range is [0, 2], which satisfies the non-
negativity of the distance function. Its disadvantage is that
it only considers the direction of two samples, and does not
consider the size of their values.

2.2 Different Distance Measures for KNN
Classification

The above distance functions have their own characteristics
and applicable scopes, i.e., they are developed for different
application requirements. e.g., euclidean distance is suitable
for low dimensional data. Its performance will decline with
the increase of dimension. The cosine distance can be well
applied to high-dimensional data. Hamming distance is
suitable for error correction and detection when transmit-
ting data on computer network.

In addition to the KNN based on the traditional distance
function, researchers have also proposed some new distance
functions for KNN [18]. Gou et al. proposed a distance func-
tion for KNN based on the local mean vector [19]. Specifi-
cally, it first finds K nearest neighbors in each class, and uses

these neighbors to construct a local mean vector, and each
class constructs K local mean vectors. Then it calculates the
distance between the test sample and each local mean vector
in each class. Finally, it selects the class of the local mean
with the smallest distance as the predicted class of the test
data. Poorheravi et al. proposed a triple learning method to
perform metric learning [20]. It not only uses hierarchical
sampling to build a new triple mining technology, but also
analyzes the proposed method on three public data sets.
Song et al. proposed a parameter-free metric learning
method [21]. This method is a supervised metric learning
algorithm. Specifically, it discards the cost term, so that there
is no need to set the parameters required to adjust the valida-
tion set. In addition, it only considers recent imposters,
which greatly reduces time costs. In the experiment, it has
achieved better results than the traditional nearest neighbor
algorithmwith largemargin. Noh et al. proposed a local met-
ric learning for nearest neighbor classification [22]. It uses
the deviation caused by the limited sampling effect to find a
suitable local metric, which can reduce the deviation. In
addition, it also applies the dimensionality reduction theory
tometric learning, which can reduce the time cost of the algo-
rithm. Ying et al. proposed a semi-supervisedmetric learning
method [23]. Specifically, it first uses the structural informa-
tion of the data to formulate a semi-supervised distance met-
ric learning model. Then it transforms the proposed method
into a problem of minimizing symmetric positive definite
matrices. Finally, it proposes an accelerated solution method
to keep the matrix symmetric and positive in each iteration.
Wang et al. proposed a robust metric learning method [24].
This method is an improvement of the nearest neighbor clas-
sification with large margin. Its main idea is to use random
distribution to estimate the posterior distribution of the
transformation matrix. It can reduce the influence of noise in
the data, and the anti-noise of the algorithm is verified in
experiments. Jiao et al. proposed a KNN classification
method based on pairwise distance metric [25]. It uses the
theory of confidence function to decompose it into paired
distance functions. Then it is adaptively designed as a pair of
KNN sub-classifiers. Finally, it performs multi-classification
by integrating these sub-classifiers. Song et al. proposed a
high-dimensional KNN search algorithm through the Breg-
man distance [26]. Specifically, it first partitions the total
dimensions to obtain multiple subspaces. Then it gets the
effective boundary from each partition. Finally, it uses
ensemble learning to gather the various partitions. Su et al.
learn the meta-distance of a sequence from virtual sequence
regression [27]. The meta-distance obtained by the ground
measurementmakes the sequences of the same category pro-
duce smaller values, and the sequences of different catego-
ries produce larger values. In addition, it also verified the
effectiveness of the proposed algorithm on multiple
sequence data sets. Faruk Ertugrul et al. proposed a new dis-
tance function [28]. It uses differential evolution method to
optimize parameters based on metadata, and applies the
proposed distance function to KNN. In addition, it also veri-
fied the performance of the algorithm on 30 public data sets.
In order to facilitate readers to understand the differences
between various distance functions, we summarize them
from the measurement affinity, class information, parame-
ters and reachable distance, as shown in Table 1.
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Researchers also compare the performance of different
distance functions. e.g., Geler et al. measured the impact of
each elastic distance on the weighted KNN classification in
time series data [29]. In the experiment, it lists the values of
each parameter in detail, compares different elastic distances
and verifies that the weighted KNN always outperforms
1NN in time series classification. Feng et al. analyzed the per-
formance of the KNN algorithm according to different dis-
tance functions, including Chebyshev distance, euclidean
distance andManhattan distance and cosine distance [30]. In
addition, it also compares the performance of some new dis-
tance functions. In KNN classification, most of the perfor-
mance of the new distance function is better than euclidean
distance. Although these new distance functions improve
KNN from different views, they all ignore the accessibility of
distance, i.e., the natural distance in the data is not found. In
addition to improving KNN through distance function,
some researchers also improve KNN for specific problems,
such as Kiyak et al. proposed a new KNN algorithm for
multi-view data [31]. Specifically, it first constructs a weak
classifier under each view. Then the weak classifiers in the
previous step are integrated to form a multi-view classifica-
tion model. Finally, the performance of the algorithm is veri-
fied on multi-view data sets. It can be regarded as an
integrated learning algorithm, i.e., it only divides multi-view
data into multiple single views for multiple learning, with-
out considering the relationship between views. Maillo et al.
proposed a fast and scalable fuzzy k-nearest neighbor algo-
rithm [32]. It uses local hybrid spill tree to divide the data set
into multiple subsets, and calculates the class membership
degree of each subset. In addition, it also uses the global
approximate hybrid spill tree to generate a tree from the
training data, so as to consider the class membership degree
of all samples. In this way, themethod considers not only the
local structure information of the data, but also the global
structure of the data.

Distance function can be used not only for KNN, but also
for missing value filling, class imbalance classification,
multi label learning and clustering. It has a wide range of

applications, e.g., Seoane Santos et al. used KNN to perform
missing value interpolation through different distance func-
tions, and verified the effects of different distance func-
tions [33]. Marchang et al. used KNN to propose a sparse
population perception model [34]. It considers spatial corre-
lation and temporal correlation in the algorithm respec-
tively. In addition, the correlation between time and space
is also embedded in the proposed method. Experiments
have also shown that KNN, which considers the correlation
between time and space, has a better effect in the inference
of missing data. Valverde, et al. used KNN for text classifica-
tion, and carried out the influence of different distance func-
tions on text classification [35]. Susan and Kumar proposed
a combination of metric learning and KNN for class imbal-
ance data classification [36]. Specifically, it first performs
spatial transformation on the data. Then it divides the K test
samples into two clusters according to the distance of the
two extreme neighbors. Finally, the majority vote rule is
used to determine the class label of test data. Although these
researchers have proposed some new measurement func-
tions, none of them really takes the natural distance into
account in the data. Sun et al. proposed a metric learning for
multi-label classification [37]. It is modeled by the interac-
tion between the sample space and the label space. Specifi-
cally, it first adopts matrix weighted representation based
on component basis. Then it uses triples to optimize the
weight of the components. Finally, the effectiveness of the
combined metric in multi-label classification is verified on
16 benchmark data sets. Gu et al. proposed a new distance
metric for clustering [38]. This method combines the advan-
tages of euclidean distance and cosine distance. It can be
applied to clustering to solve high-dimensional problems.
Gong et al. used indexable distance to perform nearest
neighbor query [39]. It uses kd-tree to further improve the
search speed of the algorithm. Wang analyzed the multi-
modal data and showed the importance of distance function
in depth multimodal method [40]. Wang et al. proposed a
dimensionality reduction algorithm for multi view data,
which is called kernel multi view subspace analysis [41]. It

TABLE 1
Comparison of Various Distance Functions in Related Work

Distance Function Measuring Affinity Class Information With or Without Parameters Reachable Distance

Euclidean distance ✓ � � �
Manhattan distance ✓ � � �
Chebyshev distance ✓ � � �
Mahalanobis distance ✓ � � �
Bhattacharyya distance ✓ � � �
Kullback-Leibler divergence ✓ � � �
Hamming distance ✓ � � �
Cosine distance ✓ � � �
Gou et al. [19] ✓ ✓ ✓ �
Poorheravi et al. [20] ✓ ✓ ✓ �
Song et al. [21] ✓ ✓ � �
Noh et al. [22] ✓ ✓ ✓ �
Ying et al. [23] ✓ ✓ ✓ �
Wang et al. [24] ✓ ✓ ✓ �
Jiao et al. [25] ✓ ✓ ✓ �
Song et al. [26] ✓ � ✓ �
Su et al. [27] ✓ ✓ ✓ �
Faruk Ertugrul et al. [28] ✓ � ✓ �
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uses self weighted learning to apply appropriate weights to
different views. After reducing the dimension of multi view
data, this method can greatly increase the applicability of
distance function.

In addition to the above application of improving KNN
based on distance function, KNN with machine learned dis-
tances is also widely used in the field of time series classifi-
cation [42]. In the field of time series classification, general
distance functions, such as euclidean distance, Hamming
distance and other distance functions calculated similarity
by corresponding position elements. They are not suitable
for time series classification. The reasons for this are: when
the same phenomenon is observed many times, we can’t
expect it to always occur at the same time and location. And
the duration of the event may be slightly different [43].
However, there are still some distance functions to solve
this problem. For example, Sakoe and Chiba proposed a
dynamic time warping (DTW) to calculate the distance
between spoken recognition time series [44]. Specifically, it
first obtains the general principle of time normalization by
using the time distortion function. Then it deduces the sym-
metric and asymmetric forms of distance function from this
principle. Finally, it uses slope constraint to limit the slope
of warpage function, so as to improve the ability to distin-
guish between different classes. The nearest neighbor classi-
fier based on DTW and its variants have achieved great
success in time series classification because they consider
the unique time features in time series data.

2.3 Data Collection and Reachable Distance

From the development of distance functions, different real
applications often need different distance functions, which
have given birth to various distance functions. It is true that
these distance functions are ideal and may not output reach-
able distances. The main reason is that the data miner and
data collector are blind to each other. In other words, data
miners believe that the training data are satisfied to their
data mining applications. And data collectors take data as
detailed as possible, so as to support much more data min-
ing applications. In this way, some natural separation infor-
mation can be merged into databases, see Case I in the
introduction section.

From extant data mining applications, both data collec-
tors and data miners are unaware of that there may be an
unbridgeable gap between two data points, i.e., the euclid-
ean distance between two data points is not the reachable
distance between in them. This must lead to that the perfor-
mance is decreased.

Different from current distance functions, this research
proposes a reachable distance function, aiming at that the
intraclass data points are always closer than those interclass
data points in training datasets. The reachable distance
function finds a clue to developing more suitable distance
functions.

3 APPROACH

In this article, we use lowercase letters, lowercase bold let-
ters, and uppercase bold letters to represent scalars, vectors,
and matrices, respectively. Assume a given sample data set
X 2 Rn�d, where n and d represent the number of samples

and the number of features, respectively. aj represents the
jth element in vector a. And let ca be the center point of the
class in which sample point a is located, cb be the center
point of the class in which sample point b is located. The
symbols used in this paper are shown in Table 2.

3.1 Reachable Distance Function

In the field of data mining, distance functions are often used
to measure the affinity relation of data points, such as classi-
fication and clustering. In the KNN classification, the euclid-
ean distance is most commonly-used to calculate the
distance between two points to obtain a neighbor. It could
be true that the quality of the KNN classification is largely
dependent on the distance formula. If the distance metric
formula measures the distance from data of same class is far
away, this will result in misclassification. When we look at
the traditional distance function, we find that the distance
metric only involves the information that the sample point
itself has (the value of the feature), and there are many other
pieces of information that are not considered. For example,
in the classification, each sample has its own classification
information except its own feature information.

Considering the above problem, we want to lead some
information about the class (e.g., the class center point) into
the classification. When we find the class center point for
each class, we can use some new distance formulas for clas-
sification. We can first get the nearest center point classifica-
tion (NCP), as shown below

dmin ¼ minfdðt; c1Þ; dðt; c2Þ; . . . ; dðt; ccÞg; (10)

where dðt; c1Þ represents the euclidean distance from t to c1,
t represents the test data point, and c1; c2; c3; . . . ; cc repre-
sents the center point of the first to cth classes. From
Eq. (10), it can be taken as that in the process of classifica-
tion, we do not need to set any parameters like K-nearest
neighbor classification (such as the selection of K value). In
practical applications, it is only necessary to request the dis-
tance of the test data to the center point of each class. Then,

TABLE 2
Notations Used in This Paper

Notations Descriptions

X 2 Rn�d Training set with n samples and d features.
Xtest 2 Rm�d Test set with m samples and d features.
Xlabel 2 R1�n Class label of training data
YS Class label of test data.
a Sample a.
b Sample b.
aj The jth element in vector a.
ca The center point of the class in which sample

point a is located.
cb The center point of the class in which sample

point b is located.
ce The center point of the class in which sample

point e is located.
c1; c2; c3; . . . ; cc The center point of the first to cth classes.
dða;bÞ Euclidean distance between a and b.
meanðÞ Mean function.
Gj the jth class data in the training set.
NðZ0Þ andNðZÞ K-nearest neighbor set under Z0 distance and Z

distance.
m and K Adjustable parameters.
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which distance is closest, the class in which the center point
is located is predicted as the class label of the test data.

Although the above-described distance function (i.e.,
Eq. (10)) takes the characteristics of the class into account, it is
still based on the euclidean distance to some extent. In addi-
tion, the method is poorly separable for the calculated dis-
tance, because different class centers may be close to each
other or different class centers are the same distance from the
test data points, and the classification effect of the algorithm
will not be good. In summary, in this paper, we propose a
reachable distance function for KNN classification as follows.

Definition 1. Let a and b be two sample points, ca the center
point of the class in which sample point a is located, and cb the
center point of the class in which sample point b is located. The
Z0 distance between a and b is defined as

Z0ða;bÞ ¼ dða; caÞ þ dðb; cbÞ þ m � dðca; cbÞ; (11)

where dðÞ is the euclidean distance between two points.

It can be seen from Eq. (11) that if a and b do not belong to
the same class, then their distance is farther through the Z0

function. In other words, by the calculation of the Eq. (11), it
can make the distance between points of same class smaller
than the distance between sample points of different class. In
this way, the separability of the class is greatly increased. It is
undeniable that this distance measurement function has
changed our previous perception of distance. It should be
noted that methodmakes the classes more separable, but it is
true that it increases the distance between similar sample
points compared to the traditional method. Because it intro-
duces a class center point, it can be proved from Fig. 3, i.e., it
makes the original straight line distance into a polyline dis-
tance. In response to this small defect, we can improve the Z0

distance in Eq. (11) as follows.

Definition 2. The Z distance (reachable distance) function is
defined as

Zða;bÞ ¼ dða;bÞ þ m � dðca; cbÞ; (12)

where m is a parameter.

It can be seen from Eq. (12) that the distance function can
also make the distance between sample points of same class
smaller than the distance between sample points of different
class, which is established on a suitable m value. This method

not only inherits the advantages of Eq. (11), but also compen-
sates for its shortcomings to some extent, i.e., the distance
between two points in the same class is closer. In other words,
it not only makes the data points of different classes farther,
but alsomakes the data points of the same class closer.

Algorithm 1. Pseudo Code for NCP-KNN

Input: Training set X 2 Rn�d, Labels of the training data set
Xlabel 2 R1�n, Test Data Xtest 2 Rm�d and K;

Output: Class label YS of test data;
1: for i ¼ 1 ! m do
2: for j ¼ 1 ! c do
3: fc1; c2; c3; . . . ; ccg is calculated bymeanðGjÞ;
4: dðXi

test; cjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXi

test � cjÞT ðXi
test � cjÞ

q
;

5: end
6: Calculate dmin ¼ minðdðXi

test; c1Þ; . . . ; dðXi
test; ccÞÞ;

7: We can get the class label YS of the test data according to
the class label corresponding to dmin;

8: end

Algorithm 2. Pseudo Code for Z0-KNN and Z-KNN

Input: Training set X 2 Rn�d, Labels of the training data set
Xlabel 2 R1�n, Test Data Xtest 2 Rm�d, K and T ;

Output: Class label YS of test data;
1: for i ¼ 1 ! m do
2: for j ¼ 1 ! c do
3: fc1; c2; c3; . . . ; ccg is calculated bymeanðGjÞ;
4: end
5: Suppose the class center point of Xi

test ismeanðXÞ ;
6: for l ¼ 1 ! n do
7: CalculateZ0ðXi

test;X
lÞ andZðXi

test;X
lÞ byEqs. (11) and (12);

8: end
9: if T ¼¼ Z0-KNN then
10: NðZ0Þ ¼ min1!KðZ0ðXi

test;X
1Þ; . . . ; Z0ðXi

test;X
nÞÞ;

11: end
12: if T ¼¼ Z-KNN then
13: NðZÞ ¼ min1!KðZðXi

test;X
1Þ; . . . ; ZðXi

test;X
nÞÞ;

14: end
15: We get the class label YS of the test data according to

majority rule on NðZ0Þ orNðZÞ;
16: end

Wewrote the pseudocode of NCP-KNN based on Eq. (10)
in Algorithm 1, and the pseudocode of Z0-KNN and Z-KNN
based on Eqs. (11) and (12) in Algorithm 2. It should be noted
that when a new test data is given, we do not know its class
center. Therefore, in step 5 of Algorithm 2, we assume that
its class center is the center of the overall data. To some
extent, it may lead to a bias to predict the test data as the class
closest to the overall data center. When the distance between
the centers of all classes in the data and the center of the over-
all data is almost equal, this kind of bias will hardly exist,
because each class center is treated equally.When the centers
of all classes in the data are not equidistant from the center of
the overall data, it may lead to a more biased prediction of
the class closest to the overall data center. The reason is: for
the class center closest to the overall data center, all data
points in this class are not necessarily close to the overall
data center, i.e., when calculating the K nearest neighbors of
the test data according to the distance function, there are still

Fig. 3. The schematic diagram of Eq. (11).
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some nearest neighbors in other classes to be selected. At this
time, the selection of K value and classification rules (such as
fixed K value and majority) are very important. Of course,
when the data is class unbalanced or the distance between
the centers of all classes in the data and the center of the over-
all data is very unequal (the distance difference is very great).
At this time, it belongs to an extreme case, the K nearest
neighbors of the test sample only come from the data in the
class closest to the overall data center, unless the K value is
very large, i.e., K is greater than the number of data in the
class closest to the overall data center.

To sum up, the proposed algorithm is more suitable for
the case where the distance difference between all class cen-
ters and the overall data center is not particularly large. Its
performance will be affected by the distance between each
class center and the overall data center, because the distance
between each class center and the overall data center will
affect the search of K nearest neighbors of the test data. In
addition, its performance is also affected by the K value and
m value, because the K value and m value will also affect the
search for the K nearest neighbors of the test data.

In order to better understand the proposed reachable dis-
tance, we describe it with Figs. 3, 4, and 5. We focus on the
characteristics of the two new distance functions according to
Figs. 3 and 4. Fig. 3 shows the distance between data points in
Eq. (11). From Fig. 3, we can find that the distance between
two data points of the same class is not a straight line distance,
it needs to pass the class center point. The shape of the dis-
tance between two data points in different classes is like a
“Z”. Fig. 4 shows the distance between data points in Eq. (12).
From Fig. 4, we can find that the distance between two data
points is the same as the traditional euclidean distance in the
same class. In different classes, the distance between two data
points includes not only the euclidean distance between
them, but also the distance between the center of the class.
Fig. 5 shows a situation in practice. For example, in the case of
Eq. (11), d1 þ d2 þ d3 is likely to be smaller than d1 þ d4. In the
case of Eq. (12), d1 þ d2 is likely to be smaller than d3. The
distance between data points of different class may be smaller
than the distance between data points of same class. To avoid
it, we introduced the parameter m. The size of the m value
will affect the measurement of the natural distance between
two data points. Usually, when m > 1, intraclass distance
is less than interclass distance. In addition, we can see that the
distance between data points of same class in Eq. (11) is
greater than the distance between data points of same

class in Eq. (12). This is the main difference between Eqs. (11)
and (12).

3.2 Properties of Z Distance

The Z (reachable) distance function has three basic proper-
ties as follows.

Property 1. Nonnegativity: zða;bÞ � 0

Property 2. Symmetry: zða;bÞ ¼ zðb; aÞ
Property 3. Directness: zða; eÞ 	 zða;bÞ þ zðb; eÞ

Now let’s prove these three properties.

Proof. For nonnegativity, because Z distance is based on
euclidean distance, it is obvious that the proposed Z dis-
tance (Eqs. (11) and (12)) is consistent. In Eq. (12), only if
a ¼ b, zða;bÞ ¼ 0. tu

Proof. For symmetry, both Eqs. (11) and (12) are also satis-
fied, as shown below

zða;bÞ ¼ dða; caÞ þ dðb; cbÞ þ dðca; cbÞ
¼ zðb; aÞ ¼ dðb; cbÞ þ dða; caÞ þ dðcb; caÞ

¼
Xd
j¼1

ðaj � cajÞ2
" #1

2

þ
Xd
j¼1

ðbj � cbjÞ2
" #1

2

þ
Xd
j¼1

ðcaj � cbjÞ2
" #1

2

(13)

Fig. 4. The schematic diagram of Eq. (12).

Fig. 5. The schematic diagram of the problem with the new distance
function.
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zða;bÞ ¼ dða;bÞ þ m � dðca; cbÞ
¼ zðb; aÞ ¼ dðb; aÞ þ m � dðcb; caÞ

¼
Xd
j¼1

ðaj � bjÞ2
" #1

2

þ m �
Xd
j¼1

ðcaj � cbjÞ2
" #1

2

: (14)

From Eqs. (13) and (14), we can see that the proposed Z-
distance has symmetry. tu

Proof. For Property 3, i.e., the proposed Z distance satisfies
the directness in the following two cases.

(1) When data points a, b and e belong to the same class.
According to Eq. (11), we can get the following formula:

zða;bÞ þ zðb; eÞ � zða; eÞ
¼ dða; caÞ þ dðb; caÞ þ dðb; caÞ
þ dðe; caÞ � dða; caÞ � dðe; caÞ

¼ 2 � dðb; caÞ ¼ 2 �
"Xd

j¼1

ðbj � cajÞ2
#1
2

� 0: (15)

According to Eq. (12) and trigonometric inequality, we
can get the following formula:

zða;bÞ þ zðb; eÞ � zða; eÞ
¼ dða;bÞ þ dðb; eÞ � dða; eÞ

¼
"Xd

j¼1

ðaj � bjÞ2
#1
2

þ
"Xd

j¼1

ðbj � ejÞ2
#1
2

�
"Xd

j¼1

ðaj � ejÞ2
#1
2

� 0: (16)

From Eqs. (15) and (16), we can get that when a, b and
e belong to the same class, the proposed Z distance
(Eqs. (11) and (12)) have the property of directness.

(2) When data points a, b and e belong to different
classes. According to Eq. (11) and trigonometric inequal-
ity, we can get the following formula:

zða;bÞ þ zðb; eÞ � zða; eÞ
¼ dða; caÞ þ dðb; cbÞ þ m � dðca; cbÞ
þ dðb; cbÞ þ dðe; ceÞ þ m � dðcb; ceÞ
� dða; caÞ � dðe; ceÞ � m � dðca; ceÞ

¼ 2 � dðb; cbÞ þ m � dðca; cbÞ
þ m � dðcb; ceÞ � m � dðca; ceÞ

¼ 2 �
"Xd

j¼1

ðbj � cbjÞ2
#1
2

þ m �
"Xd

j¼1

ðcaj � cbjÞ2
#1
2

þ m �
"Xd

j¼1

ðcbj � cejÞ2
#1
2

þ m �
"Xd

j¼1

ðcaj � cejÞ2
#1
2

� 0: (17)

According to Eq. (12), we can get the following for-
mula:

zða;bÞ þ zðb; eÞ � zða; eÞ
¼ dða;bÞ þ m � dðca; cbÞ
þ dðb; eÞ þ m � dðcb; ceÞ
� dða; eÞ � m � dðca; ceÞ

¼
"Xd

j¼1

ðaj � bjÞ2
#1
2

þ m �
"Xd

j¼1

ðcaj � cbjÞ2
#1
2

þ
"Xd

j¼1

ðbj � ejÞ2
#1
2

þ m �
"Xd

j¼1

ðcbj � cejÞ2
#1
2

�
"Xd

j¼1

ðaj � ejÞ2
#1
2

� m �
"Xd

j¼1

ðcaj � cejÞ2
#1
2

� 0: (18)

According to Eqs. (17) and (18), when a, b and e
belong to different classes, the Z distance (Eqs. (11) and
(12)) has the property of directness. In conclusion, the
proposed Z distance satisfies the property of directness.tu

Corollary 1. Intraclass distance is less than interclass distance.

Proof. For Eq. (11), if data points a and b belong to the same
class, then the Z distance between them is the following
formula:

zða;bÞ ¼ dða; caÞ þ dðb; caÞ; (19)

where ca is the class center of data points a and b. If data
points a and e belong to different classes, the Z distance
between them is the following formula:

zða; eÞ ¼ dða; caÞ þ dðe; ceÞ þ m � dðca; ceÞ: (20)

tu
From Eqs. (19) and (20), we can see that as long as the fol-

lowing equations are proved to be true:

dðe; ceÞ þ m � dðca; ceÞ > dðb; caÞ: (21)

Obviously, the interclass distance is one more natural
distance than the intraclass distance, i.e., m � dðca; ceÞ. If the
value of parameter m is infinite, then Eq. (21) is sure to hold.
When m takes a very small value, Eq. (21) may not hold.
Therefore, if the value of parameter m is large, then Eq. (11)
satisfies the characteristic that intraclass distance is less
than interclass distance.

Similarly, for Eq. (12), we only need to prove that the fol-
lowing formula holds:

dða; eÞ þ m � dðca; ceÞ > dða;bÞ: (22)

We can see that, as in Eq. (11), if the value of parameter m
is large, Eq. (12) satisfies the characteristic that intraclass
distance is less than interclass distance.

3.3 Comparative Analysis

The Z distance is based on euclidean distance, which can be
regarded as an improvement of euclidean distance. Com-
pared with euclidean distance, Z distance not only consid-
ers the natural distance, but also makes the distance
between different classes greater than the distance between
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data in the same class. The properties and functions of
euclidean distance and Z distance are listed in Tables 3
and 4, respectively. In addition, For the traditional KNN
algorithm based on euclidean distance, because each test
data point needs to calculate the distance with all training
data, its time complexity is Oðn � dÞ, where n represents the
number of training samples and d represents the dimension
of data. If there are m test data, its time complexity is Oðm �
n � dÞ. Similarly, the difference between Z-KNN and KNN
method lies in the distance function (i.e., Z distance and
euclidean distance). The Z distance is based on euclidean
distance, and the calculation times of Z-KNN and KNN in
finding k nearest neighbors are the same. Therefore, the
time complexity of Z-KNN is still Oðm � n � dÞ.

In Fig. 6, we show the comparison between the proposed
Z distance (i.e., Eqs. (11) and (12)) and euclidean distance.
From Fig. 6, we can see that using euclidean distance to cal-
culate the distance between original data does not make
classes separable, i.e., intraclass distance may be larger than
interclass distance. The proposed Z distance (Eq. (11)) can
increase the interclass distance, which leads to higher sepa-
rability of different classes. However, it also increases the
intraclass distance, making similar samples more dispersed.
The Z distance (Eq. (12)) not only increases the interclass
distance, but also makes the intraclass distance constant
(the same as the euclidean distance). Therefore, Z distance
(Eq. (12)) has the best class separability.

4 EXPERIMENTS

In order to verify the validity of the new distance functions,
we compare the KNN classification accuracy of the new dis-
tance functions and the 6 other comparison algorithms with
12 data sets1,2 (as shown in Table 5).

4.1 Experiment Settings

We download the data sets for our experiments from the
datasets website, which includes 4 binary datasets and 8
multiclassification datasets. We divide each dataset into a
training set and a test set by ten-fold cross-validation (i.e.,
we divide the data set into 10 parts, 9 of which are used as
training sets, and the remaining one is used as a test set,
which is sequentially cycled until all data have been tested).
The comparison algorithm is introduced as follows during
the experiment:

KNN [45]: It’s the traditional KNN algorithm, and we
don’t have to do anything during the training phase. In the
test phase, for each test data point, we find its K neighbors
in the training data according to the euclidean distance.
Then, the class label with the highest frequency of class in

the K neighbors is selected as the final class label of the test
data.

Nearest class center point for KNN (NCP-KNN): This
method is the most basic algorithm after introducing the
class center point. In the training phase, a class center point
is obtained for the training data in each class. In the test
phase, we calculate the distance between each test data and
the center point of the training process. The class of the
nearest class center point is the class label of the test data.

Coarse to fine K nearest neighbor classifier (CFKNN) [46]:
In this method, a new metric function is proposed, which is
expressed linearly by test data. Specifically, it first uses
training data to represent test data through least squares
loss. Then it gets the relational metric matrix by solving the
least squares loss. Finally, it uses the new metric matrix to
construct a new distance function. It classifies the test data
according to the new distance function and major rule.

Local mean representation-based k-nearest neighbor clas-
sifier (LMRKNN) [47]: It is an improved KNNmethod based
on local mean vector representation. Specifically, it first finds
K neighbors in each class and constructs a local mean vector.
Then it uses these local mean vectors to represent each test
data and obtains a relationshipmeasurement matrix. Finally,
it uses the matrix to construct a new distance function for
KNN.

Graph regularized k-local hyperplane distance nearest
neighbor algorithm (GHKNN) [48]: This method is a local
hyperplane nearest neighbor algorithm based on multi-ker-
nel learning. Specifically, it first constructs six sequence
based feature descriptors, and then learns the weight of fea-
tures. Finally, graph regularized k-local hyperplane KNN is
used to classify the subcellular localization of noncoding
RNA.

Minkowski distance based fuzzy k nearest neighbor algo-
rithm (MDFKNN) [49]: ThismethodusesMinkowski distance
to replace euclidean distance, which avoids the invalidity of
euclidean distance to high-dimensional data. Specifically, it
first uses Minkowski distance to calculate the nearest neigh-
bor data similar to each test data. Then it applies fuzzyweight
to the nearest neighbor data. Finally, it uses weighted average
to achievemore accurate prediction of data.

A Weighted Mutual k-Nearest Neighbour (WKNN) [50]:
This method can eliminate the influence of noise and pseudo
neighbors in data. Specifically, it uses mutual domain and

TABLE 3
Properties of Euclidean Distance and Z Distance

Distance function Nonnegativity Symmetry Directness Intraclass Distance is Less Than Interclass Distance

Euclidean distance ✓ ✓ ✓ �
Z distance ✓ ✓ ✓ ✓

TABLE 4
Function Comparison Between Euclidean

Distance and Z Distance

Distance Function Measuring Affinity Reachable Distance

Euclidean distance ✓ �
Z distance ✓ ✓1 http://archive.ics.uci.edu/ml

2 http://featureselection.asu.edu/datasets.php
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distance weighted voting to weaken the influence of distant
neighbors. In addition, after removing outliers, the dataset
will be refined, which makes the algorithm more inclined to
consider those nearest neighbors.

Z0-KNN: It is the traditional KNN method based on
the Z0 distance function (i.e., Eq. (11)). During the train-
ing process, we calculate the center point of each class in
the training data. In the test process, we find K neigh-
bors from training data according to Eq. (11). And then,

we use the majority rule to predict the class label of
test data.

Z-KNN: It is the traditional KNN method based on the Z
distance function (i.e., Eq. (12)). It is basically the same as
Z0-KNN’s training process and testing process. The only
difference is that it is based on Eq. (12).

For the above algorithms, we did a series of experiments.
Specifically, for each dataset, we test all the algorithms by
setting different K values (i.e., 1-10), where the NCP- KNN
algorithm has no K parameter, so we have performed 10
experiments for it. It is convenient for us to put all the algo-
rithms in one subgraph. Finally, we measure their perfor-
mance based on classification accuracy. In addition, in the
case of K = 5, we performed 10 experiments on all algorithms
to preserve the average classification accuracy and standard
deviation. Finally, for the binary classification dataset, we
not only calculated their classification accuracy, but also cal-
culated their Sensitivity (Sen) and Specificity (Spe).

The accuracy(Acc) and standard deviation(std) are calcu-
lated by the following equations respectively:

Acc ¼ Xcorrect=Xtotal; (23)

where Xcorrect represents the number of test data that is cor-
rectly classified, and Xtotal represents the total number of
test data.

std ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðAcci � gAccÞ2s
; (24)

where n represents the number of experiments, Acci repre-
sents the classification accuracy of the ith experiment, andgAcc represents the average classification accuracy of the
experiment. The smaller the std, the more stable the algo-
rithm is.

4.2 Binary Classification

Table 6 shows the classification performance of all algo-
rithms on the binary datasets. We can get the some result,
i.e., the Z-KNN algorithm achieves the best results, andNcp-
KNN performs the worst. Specifically, on the German data-
set, the classification accuracy of the Z-KNN algorithm is
7.14% higher than the traditional KNN algorithm. Because

TABLE 6
Experimental Results for Binary Data Sets

Datasets Banknote German Ionosphere Secom

ACC SEN SPE ACC SEN SPE ACC SEN SPE ACC SEN SPE

KNN 54.59 49.02 59.06 61.56 80.29 18.50 58.20 77.78 23.97 92.26 0.03 98.77

NCP-KNN 52.15 47.87 57.35 56.29 67.29 31.00 52.91 56.53 46.43 64.86 56.35 42.95

CFKNN 52.53 48.12 53.45 61.23 77.64 22.93 56.92 66.23 34.64 90.36 4.04 95.95

LMRKNN 55.27 49.65 55.45 56.67 66.33 34.13 52.81 56.63 46.04 75.37 25.67 76.34

GHKNN 55.17 49.67 59.58 55.64 64.99 33.83 58.26 78.71 21.75 92.22 2.79 98.58

MDFKNN 55.11 39.84 57.44 59.06 71.97 28.93 56.81 71.78 30.08 82.85 14.72 86.05

WKNN 55.35 49.87 59.74 60.27 76.03 23.43 57.29 75.64 24.52 88.15 7.98 93.85

Z0-KNN 54.45 48.52 57.09 56.42 67.57 30.00 58.40 79.56 25.79 75.94 22.69 75.35

Z-KNN 56.56 51.15 60.89 68.70 93.00 0.06 60.68 79.87 21.43 92.98 0.01 99.25

Fig. 6. The schematic diagram of three distance function comparisons.

TABLE 5
The Information of the Data Sets

Datasets Number of Samples Dimensions Classes

Banknote 1372 4 2
Cnae 1080 856 9
Drift 1244 129 5
Secom 1567 590 2
Ionosphere 351 34 2
Usps 9298 256 10
Yeast 1484 1470 10
Letter 20000 16 26
Movements 360 90 15
Multiple 2000 649 10
Statlog 6435 36 6
German 1000 20 2
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the euclidean distance used in the traditional KNN does not
take into account the natural distance, and the separability of
classes is not high. CFKNN uses the relationship matrix
between test data and training data to construct a new mea-
surement function, which still does not take into account the
natural distance between the data. LMRKNN uses the local
mean vector in each class to construct a new distance func-
tion. Although it takes into account the local structure of the
data, it does not take into account the separability between
classes. GHKNN improves KNN through the graph

regularization term of multi-kernel learning. It considers the
global structure information of data, and it is more suitable
for noncoding RNA to locate cells. MDFKNN not only uses
Minkowski distance to improve KNN, but also uses the
method of applying weight to k-nearest neighbors to reduce
the importance of distant neighbors like WKNN. To sum up,
the above comparison algorithms do not use reachable dis-
tance and ignore the class characteristics of data. The pro-
posed Z-KNN not only considers the natural distance in the
data, but also makes the intraclass distance larger, which

Fig. 7. The classification accuracy on the 12 datasets with different K values.
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TABLE 7
Accuracy (Mean 
 Standard Deviation) Statistical Results on Multi-Class Datasets

Datasets Cnae Drift Usps Yeast Letter Movements Multiple Statlog

KNN 10.65 
 0.01 28.78 
 0.02 10.43 
 0.00 30.86 
 0.00 3.87 
 0.01 7.26 
 0.02 10.02 
 0.01 19.35 
 0.00
NCP-KNN 10.56 
 0.01 25.88 
 0.01 10.53 
 0.00 29.25 
 0.01 3.84 
 0.00 6.39 
 0.01 9.95 
 0.01 18.32 
 0.00
CFKNN 11.52 
 0.01 34.49 
 0.01 10.43 
 0.01 21.57 
 0.01 3.82 
 0.00 7.42 
 0.01 10.34 
 0.01 20.37 
 0.02
LMRKNN 12.18 
 0.02 26.37 
 0.02 11.61 
 0.01 28.43 
 0.01 3.86 
 0.01 6.97 
 0.01 10.78 
 0.01 17.13 
 0.01
GHKNN 11.55 
 0.01 21.26 
 0.01 11.03 
 0.01 14.86 
 0.01 3.89 
 0.00 8.03 
 0.02 10.96 
 0.01 17.03 
 0.01
MDFKNN 11.39 
 0.01 27.16 
 0.01 10.51 
 0.01 30.40 
 0.01 3.87 
 0.00 7.03 
 0.01 10.38 
 0.01 17.75
 0.01
WKNN 11.44 
 0.01 26.85 
 0.01 10.73 
 0.01 30.98 
 0.01 3.88 
 0.01 7.42 
 0.02 10.74 
 0.01 19.39 
 0.01
Z0 -KNN 11.76 
 0.01 24.28 
 0.01 11.52 
 0.00 31.67 
 0.01 3.86 
 0.00 6.94 
 0.01 10.50 
 0.00 18.77 
 0.00
Z-KNN 12.59 
 0.01 31.43 
 0.01 11.53 
 0.00 31.40 
 0.00 4.06 
 0.00 9.72 
 0.02 10.80 
 0.00 20.17 
 0.00

Fig. 8. The classification accuracy of different K and m parameter (in Eq. (11)) values on the dataset.
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improves the separability of the data and achieves better
results.

4.3 Multiple Classification

Fig. 7 shows the classification accuracy of all algorithms on
12 data sets as K value. Specifically, we can see that the per-
formance of the Z-KNN algorithm is best in some cases
from Fig. 7. The NCP-KNN algorithm has the worst effect,
and the overall effect of the Z0-KNN algorithm is not satis-
factory, but it achieves the best effect on the Usps dataset,

which shows that after we introduce the class feature infor-
mation, it has a certain effect. The effect of Z-KNN is suffi-
cient to prove that we are looking for a distance function
with “high cohesion, low coupling” is very necessary for
classification. For the traditional KNN algorithm, its effect is
better than the NCP-KNN algorithm, which shows that only
considering class information is unreliable. In addition, we
also see that Z-KNN does not perform best on some data
sets. There are twomain reasons for this phenomenon: 1. Dif-
ferent K values will affect the performance of the algorithm.

Fig. 9. The classification accuracy of different K and m parameter (in Eq. (12)) values on the dataset.
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2. Z-KNNmainly considers the information lost during data
collection (such as case 2), which is a reachable distance. The
actual dataset may not lose the original information in the
collection. At this time, the advantages of Z-KNN can not be
shown.

Table 7 shows the average classification accuracy and stan-
dard deviation of the algorithm on the multi-class dataset.
From Table 7, we can see that the Z-KNN algorithm achieves
the best performance on the multi-class dataset except the
Yeast dataset. The worst performer is the NCP-KNN algo-
rithm. In addition, we can also see that the std of all algo-
rithms is relatively small, i.e., their stability is very good.

4.4 Parameter Sensitivity

In Eqs. (11) and (12), there is a parameter m, which deter-
mines the size of the natural distance. Different m value will
affect the distance calculation between training data and
test data, thus affecting the selection of nearest neighbors. If
m takes a small value, it may not play the role of measuring
natural distance at all, if m takes a large value, which may
greatly weaken the unnatural distance between samples.
Therefore, we set up experiments with different K values
and different m values. As shown in Figs. 8 and 9, we can
see that in most cases, the value of m has an impact on the
performance of classification. Specifically, on the Drift,
Cnae, and Movements data sets, the accuracy rate varies
greatly under different m values. This shows that one has to
adjust the value of parameter m carefully. In addition, on
some data sets, such as Banknote and Yeast data sets,
parameters K and m have little impact on the performance
of the algorithm. This shows that on the one hand, the selec-
tion of K value does not have a great impact on these data
sets. On the other hand, this shows that there may be no
insurmountable natural distance in these data sets, i.e., there
is no missing information in the data at the time of data col-
lection. Therefore, K value and m value have no significant
effect on these data sets.

5 CONCLUSION

This paper has proposed a new distance function, reachable
distance, or Z distance. Specifically, it takes the class attri-
bute into account in the distance function, and uses the dis-
tance between the class center points to measure the natural
distance in the data. In addition, it is an reachable distance,
and it makes the interclass distance must be greater than
the intraclass distance. In the experiment, the KNN based
on Z distance (i.e., Z-KNN) exceeds the advanced compari-
son algorithm in terms of classification accuracy.

In the future work, we plan to proceed from the follow-
ing three points as follows.

1. Finding one or more better distance functions to
make the K-nearest neighbor classification algorithm
achieve better performance.

2. Applying this idea to other classification algorithms
to find distance functions that are suitable for other
classification algorithms.

3. We will find a new distance function to apply to
clustering, it is very challenging and interesting.
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